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Thermocapillary convection in an infinite liquid layer driven by a temperature gradient 
parallel to the interface in the absence of gravity is considered. It is demonstrated that 
the temperature field has to satisfy restrictive conditions in order for a continuous layer 
to exist. It is further shown that the same conditions apply to long finite layers. Such 
layers, when subject to heating that does not satisfy the existence conditions, undergo 
large deformations and possible break up if the layer is sufficiently long. 

1. Introduction 
Thermocapillary convection has been recognized as an important transport 

mechanism in many areas of technology, such as zero-gravity containerless materials 
processing, where it is a dominant source of motion, or in conventional crystal growth 
and welding processes, where it is a contributing factor. Control and optimization of 
these processes, particularly for zero-gravity applications, critically depend on the 
complete understanding of all phenomena that may be induced by the thermocapillary 
effect. 

The objective of this work is to study phenomena induced by the thermocapillary 
effect in a liquid layer in the absence of gravity. This configuration has been selected 
owing to its simple geometrical form. The layer is resting on a solid plate and its upper 
free surface (see figure 1) is subject to an arbitrary external heating. Since the 
temperature gradient vector is parallel to the interface, the thermocapillary effect 
always generates some motion, regardless of the magnitude of the temperature 
gradient. This is in contrast to the more classical case of Marangoni instability, where 
the temperature gradient is normal to the interface and motion does not begin until 
certain critical conditions are met. 

Two types of layers, i.e. infinite (figure 1) and finite (figure 2), have been selected for 
the analysis. Their comparison allows us to estimate the importance of geometrical 
constraints (sidewalls, contact conditions) on the convection inside the layer and on the 
deformation of the interface. 

The subject of thermocapillary convection in infinite layers has been considered 
before under a variety of simplifying assumptions. Levich (1962) and Birikh (1966) 
analysed a two-dimensional layer with a non-deformable interface and flow being 
parallel to the boundaries. The resulting solution did not satisfy the condition of 
constant pressure along the interface. Yih (1968) reconsidered this problem in the 
context of chemico-capillary flows with gravity present and with allowance for small 
interface deformation. Sanochkin (1983) considered the interface to be flat and 
included transverse velocity components with simplifying assumptions analogous to 
those used in boundary-layer theory. Lai & Chai (1986) carried out an assessment of 
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FIGURE 1. Schematic diagram of liquid layer. 
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FIGURE 2.  Schematic diagram of liquid in a cavity and its computational model. 

convective heat transport effects under similar assumptions. Sanochkin (1 984) 
evaluated inertial effects and Vybornov & Sanochkin (1985) analysed small interface 
distortions. Pshenichnikov & Tokmenina (1983) demonstrated experimentally that an 
appreciable curving of the interface occurs when the thickness of the layer is sufficiently 
small. Adler & Sowerby (1970) extended Yih's (1968) analysis into three dimensions. 
Pimputkar & Ostrach (1980) considered transient flow induced by a fixed interface 
temperature with the flow being, in effect, parallel to the iilterface and inertial effects 
being negligible. Kopbosynov & Pukhnachev (1 986) extended this approach to three- 
dimensional situations. 

Thermocapillary convection in finite cavities has also attracted a lot of attention. Sen 
& Davis (1982) considered flow in a very long cavity driven by a linear temperature 
distribution with capillary number decreasing inversely proportionally to the cavity 
length. Sen (1 986) reconsidered \this problem and allowed large interface deformations 
to occur. Numerical simulatiohs for various combinations of Reynolds, Prandtl, 
Marangoni and Biot numbers ahd different external heating have been carried out by 
numerous authors (Rivas & Ostrach 1989; Hadid & Roux 1992; Laure, Roux & Hadid 
1990; Hadid & Roux 1990; Carpenter & Homsy 1990; Rivas 1991; Zebib, Homsy & 
Meiberg 1985; Cowley & Dads 1983). The interface was always assumed to be 
essentially non-deformable, which limited the scope of these studies to the analysis of 
the convention patterns only. I 

The purpose of the present work is to carry out a complete analysis of the response 
of a liquid layer to external heating. It will be demonstrated that the dominant part of 
this response consists of large interfacial distortions (and possible breakup), and not of 
convection, as commonly assumed. Small deformations may occur only if the external 
temperature field satisfies a set of very restrictive existence conditions. The form of 
these conditions shows that it may not be possible to satisfy them in most practical 
applications. The analysis will be carried out without any simplifying assumptions in 
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order to demonstrate the generality of the existence conditions. A set of carefully 
selected examples will be used to illustrate response of the layer to various types of 
external heating and to show that the layer, if sufficiently long, will break up when 
exposed to heating that violates the existence conditions. 

Similar existence conditions can be identified in the case of liquid layers driven by 
other means, e.g. chemico-capillary flows. This class of flows has been studied by 
Homsy & Meiburg (1984) and Carpenter & Homsy (1985) using assumptions similar 
to those used by Sen & Davis (1982). 

The paper is organized as follows. Section 2 gives the formulation of the flow problem. 
Section 3 presents the solution with the small-interface-deformation assumption and 
describes conditions under which such deformation may exist. Section 4 discusses 
general solutions with an arbitrary deformation. Section 5 describes interface 
diagnostic procedures. Section 6 provides short summary of the main conclusions. 

2. Problem formulation 
Consider a liquid layer of thickness 1, infinite in the x-direction, bounded by a solid 

insulated plate from below and a gas from above, as shown in figure 1 .  The liquid is 
incompressible, Newtonian, has density p, thermal conductivity k, specific heat per unit 
mass c, thermal diffusivity K = k/pc,  kinematic viscosity u and dynamic viscosity p. The 
free surface, described by y = h(x), is bounded by a passive gas of negligible density 
and viscosity. This free surface is associated with a surface tension c, which depends 
on the local temperature. It is assumed, without loss of generality, that the pressure of 
the gas is negligible. 

In the absence of gravity, the steady motion of the liquid is governed by the 
continuity, Navier-Stokes and energy equations subject to the following boundary 
conditions : 

y = o :  u=T,=o, (2.1 a) 

F(x,y) = y-h(x) = 0: U . V F =  0 (2.1 b)  

kVT.n+H(T-T, )  = O .  (2.1 d )  

In the above, U = ui+vj is the velocity vector, i a n d j  are the unit vectors in the x- and 
y-directions, respectively, T is the temperature of the liquid, S is the stress tensor of the 
liquid, A stands for the mean curvature of the interface, V denotes the nabla operator, 
n stands for the unit vector normal to the interface pointing outwards, t denotes the 
unit vector tangential to the interface, the subscripts x, y denote partial derivatives 
a/ax, a/ay, respectively, and the subscripts n, s denote normal and tangential 
derivatives at the interface, respectively. 

Equation (2.1 b)  is the kinematic condition at the liquid-gas interface. The stress 
balances at the interface are given by (2.1 c). The jump in the normal stress across the 
interface is balanced by the surface tension times the mean curvature, and the jump in 
the shear stress at the interface is balanced by the surface tension gradient. The unit 
vectors are defined as follows: 

Sen = 2aAn+a,t (2.1 c) 

where 

n = ( -h, i + j ) / N ,  t = (i+ h,j)/N, 
N = (1 + h y .  

The mean curvature A of the interface in (2.1 c) has the definition 
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The thermal boundary condition at the interface is given by (2.1 d )  in which k is the 
thermal conductivity of the liquid, His  the heat transfer coefficient in the gas and T,(x) 
is the temperature in the gas phase. The thermal boundary condition presumes that the 
gas temperature T,(x) is known a priori and that the heat transport at the liquid-gas 
interface can be described by using a heat-transfer coefficient H. 

Apart from boundary conditions (2.1), the liquid must also satisfy the mass 
conservation constraint. Since the liquid is assumed to be incompressible, its total 
volume must remain constant, i.e. 

volume = const. (2.5) 
Solution to the problem requires specification of the type of behaviour of the 

h < D, h,+O (2.6a, b) 

where D is an arbitrary constant. Condition (2 .6~)  states that the interface remains 
bounded as x+ k co and is less restrictive than (2.6b) which requires that the interface 
becomes flat as x + k co. 

We shall use a linear equation of state for surface tension. In particular, we take 

where g* is the surface tension of the liquid at the reference temperature T* and the 
constant y is the negative of the derivative of the surface tension with respect to 
temperature. 

We scale the problem by using I, u*, pu*/ l  and g* as the length, velocity, pressure and 
surface tension scales, respectively. The dimensionless temperature T' is defined as 

Here Tm,, and Tmin denote a measure of the maximum and the minimum of the 
interface temperature, respectively. The characteristic velocity u* is derived from the so- 
called Marangoni effect, i.e. the jump in shear along the interface balances the surface 
tension gradient. This leads to 

interface as x --f k co. Two cases will be considered, i.e. 

d T )  = g*- y(T- T*), (2.7) 

T-  T* = (T,,, - Tmin) T', T, - T* = (T,,, - Tmin) T i .  (2.8) 

U* = Y(Tmax-  Tmin>/P* (2.9) 
With the above definitions the dimensionless equations (with the primes dropped) 

(2.10a) 
(2.10b) 
(2.104 

can be written in the form 

L,(u, v) = v * u = 0, 
L,(u,v,p) = Re(l7.V) U+Vp-V2U= 0, 
L3(u,v, T )  = Ma(U.V) T-V2T= 0,  

where p denotes the pressure. 
Reynolds number Re and Maragoni number Ma have the standard definitions, i.e. 

, Ma=--= u* 1 Y(Tmax- Tmin) I (2.11) Re=---- u* 1 - Y(Tmax- Tmin) 1 
Y PV K PK 

The boundary conditions (2.1) transforms to 

y = O :  u = v = T = O  1 / '  (2.12~) 
y = h(x): u = uh,, (2.12b) 

(2.124 
(2.12d) 

N-l(-h,T,+T,)+Bi(T-T,) = 0, (2.12e) 

- p  + 2 W 2 [ h ;  u, + uY - hx(v, + u,)] = Ca-'N-3h,,( 1 - Ca T) ,  

2h,( - U ,  + u ~ )  + (1 - h:) (u, + uY) = - (T ,  + h, q) N, 
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where (2.12b) is the kinematic condition, ( 2 . 1 2 ~ )  and (2.12 d )  are the stress balances in 
the normal and tangential directions, respectively, and (2.12e) describes the heat 
transfer condition. In ( 2 . 1 2 ~ )  Ca is the capillary number, given by 

c a  = PU*/fl* = Y(Tm,,- Tmin)lfl*. (2.13) 

The Biot number Bi in (2.12e) is defined by 

Bi = Hl/k  (2.14) 

and measures the heat transport between the gas and the liquid phases. 

3. Small-deformation theory 

equations given in 92. There is an exact solution 
It is useful to begin this section with a short discussion of the known solutions of the 

u = C y ,  v ~ O ,  p = O ,  T = - C x + f ( y ) ,  h - 1 ,  (3.1) 

where C = const, which corresponds to plane Couette flow. Since there is a net mass 
flux in the x-direction, this solution is relevant only for infinite layers and it does not 
approximate flow in very long cavities. Birikh (1966) simulated the presence of the 
endwalls by enforcing zero mass flux across vertical sections and found, ignoring 
surface deflections, that p - x,  v = 0 and u is given by Couette-Poiseuille flow. Sen & 
Davis (1982) considered asymptotically long cavities subject to linear heating and 
concluded that surface deflections remain small in the case of conduction-dominated 
Stokes flow provided that CaL4 = O(l ) ,  where L is the length of the cavity. Sen (1986) 
extended this analysis to the case of CaL3 = O( 1 )  and showed that large deformations 
may occur. Tan, Bankoff & Davis (1990) considered periodic heating in the small- 
wavenumber limit and, using assumptions similar to those used by Sen & Davis (1982), 
showed that the interface may become significantly distorted. Floryan & Krol (1991) 
considered conduction-dominated Stokes flow in three-dimensional layers and derived 
conditions under which the interface may undergo only small deformations. 

In the following subsection, we shall explore the behaviour of non-isothermal liquid 
layers subject to arbitrary heating under the assumption that only small interfacial 
distortions may occur. We shall determine a posteriori conditions under which such an 
assumption is valid. 

3.1. Construction of a solution in the limit Ca+O 
The limit of small capillary number Ca + 0 corresponds to the case of the mean surface 
tension being very large compared to the amplitude of its thermal variations. In such 
a situation, the shape of the interface is expected to be dominated by the (static) 
capillary forces, with the (dynamic) thermocapillary effect producing only small 
distortions. This situation occurs either in the case of liquids that display weak 
variations of surface tension with temperature (a common situation), or in the case of 
liquids subject to small temperature gradients along the interface. 

Following Rybicki & Floryan (1987), we seek a solution in the form of asymptotic 
expansions 

where q stands for each of u, v, T, h, I) and I/. The first term in the pressure expansion 
corresponds to the static pressure caused by the mean surface tension and its 
magnitude expresses the fact that it scales on the capillary (g*/ l )  rather than the dynamic 

q = qo + Ca q1 + O(Ca2>, p = Ca-lp, +po  + Cap,  + O(Ca2), (3 4 
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@,u,/l) pressure scale. The regular character of these expansions is confirmed by 
numerical experiments discussed in 94. 

Substitution of expansion (3.2) into the field equations (2.10) and boundary 
conditions (2.12) and grouping of the terms of the same order of magnitude in Ca leads 
to a sequence of simplified problems. Only the leading-order equations are given below. 

Problem 0 (Ca-'): 

boundary condition: 

volume constraint : 

interface condition : h, < Do or h,, + 0 as x --f & 00. 
Problem 0 (Ca'): 

boundary conditions 

Ps, = P s y  = 0 ;  

-ps  = ho,,( 1 + h ; , ) - 3 / z ;  

volume is known 

LJu,, u,) = 0, L,(u,, u0,pJ = 0, L&,, VO, T,) = 0 : 

y = 0 :  uo = uo = qy = 0,  

y = h,(x): u, = U0hOZ, 

-Po + 2(1+ %,)-l[h;, uos + uoy - hoz(uos + uo,>l 

(3.3a) 

(3.3b) 

( 3 . 3 4  

(3.3 d )  

(3.4 a-c) 

(3.5a) 

(3.5b) 

= (h,,,-h,,,[q + 3(1 + h;z)-lho,hl,]] ( 1  +h,2,)-3'2, (3.5c) 

( 3 . 5 4  2ho,(-uo,+u,,)+(l-h;,)(u,,+u,y) = -(&,+ho, &&(1 +h:,)'/2, 
(1+h,,)-1'~(-h0,T,,+qy)+Bi(q-~) = 0 ;  (3.5e) 

a2 

h,dx = 0: (3 .5 f )  

interface condition: h,  < D, or h,, + 0 as x+ 00. (3.5g) 

J-, volume constraint: 

Equations (3 .3)  describe interface in the state of static equilibrium, with (3.36) (the 
Young-Laplace equation) describing its shape under isothermal conditions. Equations 
(3.4) with boundary conditions (3.5 a, 6, d, e)  describe thermocapillary convection. The 
normal stress boundary condition ( 3 . 5 ~ )  together with the constraints (3.5J g) define 
the deformation problem describing changes h,(x)  in the shape of the interface induced 
by the thermocapillary effect. 

The solution procedure begins with the determination of the initial (isothermal) 
shape of the interface, followed by solution of the convection problem (with fixed 
interface), and concludes with the determination of the (small) interface deformation. 

The validity of expansions (3.2) is subject to some restrictions. Scaling introduced in 
92 assumes that the interface changes on the same lengthscale 1 as the temperature and 
velocity fields. The shape of the interface, however, results from the global rather than 
just local equilibrium conditions, as best exemplified by the volume constraint (2.5). 
Thus, some other lengthscale may be present in the problem and this scale may or may 
not be directly related to the character of the temperature field. Rescaling of h, and h,, 
on the right-hand side of ( 2 . 1 2 ~ )  with a new distinct lengthscale L leads to 

RHS = Ca-'( 1 + A2hg)1/2A2h,,( 1 - Ca T ) ,  (3.6) 

where A = I/L and x = Ax. If L becomes very large, A + O  and expansions (3.2) 
become invalid. Since the upper bound on L is established by the geometrical 
constraints (i.e. by the total length of the interface), L may assume an arbitrarily large 
value in the case of an infinitely long layer. This may lead to the appearance of large 
interfacial distortions and breakdown of expansions (3.2). It will be shown in 94 that 
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these large distortions can actually occur and that they do result in the breakup of the 
layer. The question arises then whether it is possible to maintain a long continuous 
non-isothermal liquid layer. In $3.2, we shall derive explicit conditions for the type of 
external heating applied to the interface that guarantees the existence of such layer. 
Such heating cannot give rise to a too long lengthscale L in the deformation pattern. 
An obvious example is provided by a periodic heating with a not too long wavelength. 
In the case of localized heating, the form of the heating that does not lead to break up 
of the layer is not apparent. We shall demonstrate in $4 that external heating that does 
not satisfy the existence conditions does result in large interface distortions. 

The magnitude of the interfacial distortion depends on the magnitude of the 
capillary number, as expressed by expansions (3.2). These expansions are valid for 
small but finite Ca. In the infinite-layer case, appearance of an arbitrarily large L is 
possible and thus large distortions may occur regardless of how small Ca is. It is then 
a rule rather than an exception that expansions of the type (3.2) are not valid, unless 
some other conditions explicitly preventing appearance of a too large L are imposed. 
In the finite-layer case, the maximum possible value of L is limited by the length of the 
layer. Thus, it is always possible to find a sufficiently small Ca to prevent the 
appearance of large distortion for a given length of the layer. In such cases expansions 
of the type (3.2) are generally valid. 

Expansions similar to (3.2) had been frequently used in the literature in constructing 
solutions describing flow in long cavities (small-aspect-ratio limit), see Sen & Davis 
(1982). In the limit, as the length of the cavity is increased, the capillary number is 
assumed to decrease at a sufficiently rapid rate to guarantee fulfilment of all the 
constraints and boundary conditions. This type of limit can be realized experimentally 
by reducing the temperature gradient along the interface when L + 00. If the cavity is 
heated in the same manner while its length increases, large deformations and breakup 
of the layer would occur when the cavity becomes sufficiently long. Such an experiment 
is simulated in $4. 

In the following subsection, we shall focus our attention on a layer of constant 
thickness, i.e. 

It can be shown that this layer is statically stable. 

h, = 1, p s  = 0. (3.7) 

3.2. Interface deformation 
The deformation equation ( 3 . 5 ~ )  and the constraint conditions (3.5J g )  reduce in the 
case of a plane layer to the following form: 

(3.8a, b) 

h, < D ,  or hlX+O as x-tkoo, (3.8 c, d )  

where W(X) = -po(x, 1) + 2v0,(x, 1) - B (3.8e) 

is referred to as the loading function, po denotes pressure normalized in an arbitrary 
way and B stands for the corresponding normalization constant. It should be stressed 
that (3.8) remains valid for arbitrary values of Re and Ma,  as long as the interface 
distortion remains small. 

We shall focus the following discussion on the case of an interface being fiat as x -t 
f 00, i.e. being subject to boundary conditions (3.8d). The existence and character of 
solutions of (3.8a, b ,  d )  depend on the behaviour of the loading function W(x) in the 
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limits x + & 00 . The obvious condition is that W(x) + 0 as x + 
of (3 .8~)  and application of boundary conditions (3.8d) gives 

J .  M .  Floryan and C. Chen 

co. Simple integration 

W(x)dx = 0, (3.9) 

which is the necessary condition for existence of a solution of the deformation problem. 
If we further assume that W(x) is absolutely convergent for x-t & 00, then double 
integration of (3.8a) followed by integration by parts and imposition of (3.8b) and 
(3.8d) gives a deformation in the form 

(3.10) 
J -co J -52 J --m 

provided that 
Q) W [ xW(x)dx=G, [ x2W(x)dx=0, (3.11a, b) 

J -co J -co 

I W(x)l = 0(1xl-~) as x-+ f 00, (3.11~) 

where G = O(1) is a constant. Equations (3.11) define sufficient conditions for the 
existence of solutions. It is possible that conditions (3.11) may not be satisfied while the 
solution of the deformation problem exists as, for example, is the case when W(x) 
decays in an oscillatory manner but at a less rapid rate than required by (3.11 c). An 
example of such a loading function is given in Appendix A. In the case of a localized 
heating, dynamical effects far away from the heat source decay exponentially with 
distance and thus (3.11 c) is satisfied automatically while (3.1 1 a, b) assume the role of 
the necessary conditions. This is the case of most interest in practical applications. 

One may note that 

h,+aG as x+-coo; h,-t-+G as x++co, 

and thus, if we want the layer to be unaffected by heating at x +  f 00, the loading 
function W(x) must satisfy (3.11 a) with G = 0. 

An interesting example that demonstrates the generality of the existence conditions 
is provided by the special solution (3.1) which is valid for arbitrary Ca. In this case 
W(x) = 0 the existence conditions (3.9) and (3.1 1) are satisfied, the surface deformation 
becomes h,(x) = 0 and the asymptotic series (3.2) collapse to the leading term only. 

Conditions (3.9) and (3.11) define the type of external heating applied to the interface 
that guarantees the existence of small deformations only. In general, these conditions 
can be tested only a posteriori, since the relation between the external heating and the 
function W is not explicit. In the special case of Re = Ma = 0, this relation can be 
determined using Fourier transforms (see Appendix B). This case will now be discussed 
in detail. 

Fourier transform F?(k) of W(x) is defined (following (B 3)) as 
co 

F?(k) = (21r)-l/~J-~ W(x) eikz dx. (3.12) 

Since we assume the existence of a Fourier transform of W and its derivatives, 
condition (3.1 1 c) is satisfied and (3.1 1 a, b) become the necessary conditions. All the 
existence conditions (3.9), (3.1 1 a, b) can be expressed as 

(3.13) 
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where i denotes imaginary unit. @(k) can be evaluated from solution (B 4), i.e. 

2k3 
Qk), 

Bicosh (k) 
W(k) = . 

k sinh (k) + Bicosh (k) sinh (2k) - 2k 
(3.14) 

where $(k) stands for the Fourier transform of the temperature T,(x) of the gas phase. 
Equations (3.13) require that 

= 0, 
d2c(0) 

= iG(27~-l/~, ~ 

dk2 
3 d t (0 )  
2 dk 

Q O )  = 0, -- (3.15) 

which, in view of the definition of the Fourier transform, requires that the external 
temperature field satisfies the following conditions 

m 00 a2 1 T,(x)dx = 0, 1 xT,(x)dx = :G, 1 x2Tg(x)dx = 0. (3.16a-c) 
J --cD J -m J -m 

Equations (3.16) give explicit form of the existence conditions in the case of Re = 
Ma = 0. The same form of conditions is also valid for Bi = co, Re = 0 and arbitrary 
Ma. A two-dimensional version of conditions (3.16) for the case of an interface 
being unaffected by the heating far away from the heating area was given by Floryan & 
Krol (1991). 

We shall now focus our discussion on the interface subject to small (and finite) 
deformation for x++ 00, i.e. described by boundary condition (3.8~). We shall 
consider only one class of solutions, i.e. those corresponding to a periodic heating. 
Double integration of (3.8a) over a single period followed by integration by parts and 
imposition of a periodicity condition on W, h,, and h,, together with the volume 
constraint (3.8b) result in the deformation in the form 

hl(X) = x 1: W(t-1 d t  - s: t w g  d t  + (t +;) s:” ow dt -& /‘22W(Q dt,  (3.17) 

where L, denotes the length of the period. In the special case of Re = Ma = 0 and 
T,(x) = T, sin (ax) (see Appendix B, (B 5)) the deformation becomes 

2a sin(ax). 
T, Bi cosh (a) 

h,(x) = -  . 
a sinh (a) + Bicosh (a) sinh (2a) - 2a 

(3.18) 

For a very long wavelength of heating (a-O), the amplitude of the deformation 
increases without bounds, i.e. 

h,(x) + - :c sin (ax) as a + 0. (3.19) 

Equation (3.19) shows that large interface deformation may occur even in the case of 
periodic heating provided that the wavelength of the heating is sufficiently long. This 
is in agreement with predictions of Tan et al. (1990). 

4. Direct solution 
In this section, we shall discuss the behaviour of the liquid layer subject to various 

types of external heating that could be of interest in practical applications. Conditions 
(3.1 1 a-c) become necessary in such circumstances. We shall demonstrate that the 
response of the layer consists primarily of large interfacial distortion (and breakup), 
unless existence conditions (3.9), (3.11 a-c) are strictly enforced. Since the non- 
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isothermal layer cannot exist when the external heating does not satisfy the above 
conditions, we shall consider flow in a finite cavity, as shown in figure 2, and observe 
the pattern of the interface deformation as the length L of the cavity increases. We shall 
demonstrate that conditions (3.9), (3.11 a-c), which are strictly speaking valid only for 
infinite layers, also give a good indication of the behaviour of finite layers, i.e. the lack 
of existence of non-isothermal layers is not an artifact of the infinite-length assumption 
but a characteristic feature of this class of problems. We shall carry out numerical 
solution of the complete moving-boundary problem (2.10) with the complete boundary 
conditions (2.12) in order to determine the actual behaviour of the liquid without any 
assumptions that might be interpreted as being too restrictive. This approach permits 
demonstration of the generality of the existence conditions (3.9), (3.11 a-c). 

Motion of the liquid inside the cavity shown in figure 2 is governed by (2.10) with 
the boundary conditions at the bottom of the cavity given by (2.12~) and at the 
interface by (2.12b-e). Boundary conditions at the sidewall are given as 

(4.1 a) 

(4.1 b)  

Thermal conditions in (4.1) and temperature distribution in the gas phase T,(x) in 
(2.12e) must satisfy consistence conditions at the upper corners. 

The type of contact between the interface and the sidewalls that corresponds to 
(2.6b) is 

h , = O  at x = f i L .  (4 .2~)  

The above condition describes an interface which is allowed to move along the 
sidewalls with the constant contact angle fixed at 90". We shall also consider a more 
constraining condition of fixed contact points, i.e. 

h = l  at x=+!jL.  (4.2 b) 

One should keep in mind that in this case the existence conditions become more 
restrictive, i.e. G = 0 in (3.11 a). 

In the present case, the volumetric constraint condition assumes the form 

h d x =  V.  K2 (4.3) 

4.1. Numerical algorithm 
A detailed description of the algorithm and testing of its accuracy were presented by 
Chen & Floryan (1994). The following description is limited to a short outline. 

The governing equations are expressed in terms of a streamfunction ($) - vorticity 
(w)  formulation and are transformed from the irregular physical domain (defined by 
h(x)) in the (x, y)-plane into a rectangular computational domain in the ([,q)-plane 
(figure 2). The equations assume the following form: 

V2$ = - w ,  (4 .4~)  
V 2w = Re h-'( $? w, - $, w,), (4.4 b) 

V 2 T =  Mah-l($,Tg-$,T,), (4.4c) 
where 
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FIGURE 3. Sketch of a typical computational molecule. 

The boundary conditions transform to 

(4.5 a) 

(4.5b) 
(4.5 c )  

7 =  1: $ = O ,  (4 .5d)  

+Ca-'h,(l -CaT)( l  = 0, (4.5e) 

p -2(1 +hi)-" -( 1 + h;) h-l$[,, +h5h-2(h; -h,h + 1) $,,I 

(1 + hi)'h-'$,,,, - 2h5 (1 + hi) h-'$c,, + [( 1 - h;) hhg + (1 + hi) 2h;] h-'$, = - (1 + hi)112 T 
( 4 . 6  

(1 + hi)1'2h-1 - h, (1 + hi)-1/2Tg + Bi( T -  T,) = 0. (4.5g) 
The forms of the contact conditions and the volumetric constraint condition remain 
unchanged. 

The above equations are solved using Picard-type iteration on the shape of the 
interface. An initial estimate of the shape of the interface is made, then the flow 
problem is solved with the assumed form of the interface without enforcing the normal 
stress boundary condition, and finally, the normal stress boundary condition is used to 
test whether the initial approximation of the interface was accurate. This procedure is 
repeated until a sufficiently accurate estimate of the location of the interface is 
obtained. The algorithm easily deals with the case of small-deformation theory 
described in $3, where it terminates after one complete cycle. 

A finite-difference discretization procedure is used. A rectangular computational 
grid of size A(, AT in the E, 7 directions is utilized, with grid lines parallel to the 6- and 
7-axes and such that the grid fits exactly the geometry of the computational domain, 
with the side and bottom walls and the interface as certain grid lines. Around a typical 
interior grid point (to, T ~ )  we adopt the convention that quantities at (to, 70) and in 
eight neighbouring points are denoted by subscripts 0, 1, ..., 8, as shown in figure 3. 
Then (4.4a, b) are approximated by using central second-order differences in the usual 
manner, to give 

- 2(Al + A 2) $0 + $1 $2 + + A4) $3 + $4 + $5 - $8 

+ ( A , - A 4 ) $ 7 + A 3 $ 8 + ~ 0  = 0, ( 4 . 6 ~ )  

-2(Ai + 
+ [A,  + A ,  + Re A5($1- $511 "3 + A3 0 4  + [Ai + ReA5($3 - $,)I 0 5  

wo + [A,-ReA5($3-$7)]01-A, 0 2  

-A3  us + [A,  - A ,  - ReA5($, - $J w7 +A, w8 = 0, (4.6b) 
where 

A, = A[-', A ,  = (1 +7'h;)(hA7)-', A, = 7hS(2hA(A7)-l, 
A, = ~(2h.i - hh") (2h2 A7)-', A,  = (4h A t  AT)-'. 
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The discretized energy equation has the same form as (4.6b) with w replaced by T and 
Re replaced by Ma. 

The boundary conditions for (4.6) are given by (4.5a-d,f, 8). For (4.6a), values of 
$ are known at all grid points on the solid walls and along the interface. For (4.6b), 
a boundary condition for w is required at grid points on the solid walls. It follows from 
( 4 . 4 ~ )  and (4.5a, b) that at the sidewalls w = -$t6, which, after a second-order 
approximation, assumes the form 

wb = ($i+l -8@i)/2A2, ( 4 . 7 ~ )  

where subscript b refers to the wall values, subscript i refers to the internal grid point 
most immediate to b, subscript i+ 1 refers to the next grid point in the same direction 
and A denotes grid size. At the bottom, w = - $,71 hP2 and the boundary condition for 
vortici ty becomes 

wb = - 8$J/2A2h2. (4.7b) 

The boundary condition at the interface is obtained by substituting (4.5f) into ( 4 . 4 ~ )  
resulting in 

(1 + hi)lI2q h + 2h,, @T 

h( 1 + hi) 
w =  (4.74 

In the above, T, is evaluated using a standard central-difference approximation, and $, 
is determined using a one-sided difference approximation. Both T, and $, have to be 
updated during the iteration process. For the energy equation, values of Tare known 
at the sidewalls. At the remaining two boundaries T is determined from the discretized 
boundary conditions (4.5 c) and (4.5g). All discretization formulae are second-order 
accurate. 

The discretized field equations were solved by the standard Gauss-Seidel relaxation 
procedure. The systematic iterative procedure between the various equations consisted 
of performing one complete Gauss-Seidel iteration of (4.6 a),  followed by similar 
iteration of (4.6b) and then a complete iteration of the energy equation followed by a 
recalculation of the boundary values of w and T. The iteration was performed until the 
convergence criteria 

lw(i+l) - w(i)I < e, I$(i+l) - $(i)I < 6, Ipi+l) - p)1 < ,c, IResf)I < c, 

/Resf)[ < E ,  IRes$')I < c 

with 6 = lop6 and i denoting the iteration number, were satisfied at all grid points. In 
the above, Res,, Res, and Res,, stand for the residua of the discretized equations 
(4.4a), (4.4b), and (4.4c), respectively. Those criteria were judged to be generally 
satisfactory ; nevertheless certain cases were additionally checked by reducing the 
criterion to c = The relaxation factor used in the calculations varied from 1 .O for 
flat interface to 0.05 for very deformed interfaces. These factors had to be further 
reduced with increasing values of Re and Ma. 

Equations (4.6) and (4.7) treat the location of the interface as being known, with h 
denoting its most recent (from the last Picard iteration) approximation. After $ and 
w had been determined with sufficient accuracy, a new shape of interface is found by 
solving the deformation problem consisting of (4.5e) and (4.3) and either ( 4 . 2 ~ )  or 
(4.2b). 

Equation (4.5e) requires knowledge of pressure at the interface. Pressure is evaluated 
from the x-component of (2.10b) and the known solution of (4.4), e.g. 

p ,  = h, w, - (1 + hi) hk'w, - Re hP2$,[( 1 + hi) $,v + h, h-'(h, h - h,2 - 1) $.,I. (4.8) 
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The above expression is integrated using the trapezoidal rule in the +(-directions 
beginning at (= 0. The calculated pressure is denoted by p to show that it is 
normalized with condition p(0, 1 )  = 0. The mixed derivative of the streamfunction at 
the interface appearing in (4.8) is evaluated according to the formula 

$t7 = M@., - $,> - 4($, - $.,I + $* - $,J4 A W v  + W P )  + o(Av2), (4.9) 

where subscripts refer to the points shown schematically in figure 3 ,  with the points 2, 
3 and 4 located on the interface. Other mean flow quantities are evaluated using 
standard one-sided or central second-order finite-difference approximations. 

Equations (4.5e) defines a two-point boundary-value problem for h subject to a 
constraint condition (4.3). In the numerical solution, (4.5e) and (4.3) are treated as a 
system of equations and are solved directly. The pressure and shape of the interface are 
represented as 

(4. IOU-c) 

where h, denotes the known shape of the isothermal interface corresponding to the 
known volume of the liquid (4.3), p s  stands for the known pressure of the isothermal 
liquid, h, denotes the change of shape of the interface due to non-isothermal effects, p 
denotes pressure associated with the thermocapillary convection and determined 
numerically from the solution of the field equations (4.8) and B stands for an arbitrary 
constant than can be present in the pressure field. Pressure p satisfies the normalization 
condition p ( 0 , l )  = 0. Equation (4.5e) can be written, for any grid point along the 
interface, in the form 

E(Ai, A,, hSEi, B) = 0, (4.11) 

where A,, AEi, h,, i = I ,  ..., N ,  denote values of h,, h,,, h,, at the grid points with 
i = 1 corresponding to the left contact point, and all the remaining quantities being 
known. Derivatives in (4.1 1) are approximated using standard central-difference 
approximations leading to an equation in the form 

4 ( A 1 - 1 ,  A,,  &+I, B) = 0, (4.12) 

p = Ca-lp, +p+ B, h = h, + h,, p s  = - hOEE(1 + h 3 3 ’ 2 ,  

which is then linearized using the Newton-Raphson procedure 

In the above, superscripts denote iteration count and derivatives are evaluated 
analytically at A{!\, hik), 6;;;. Now (4.13) can be rewritten as 

A i h ( k + l )  i-1 + B i i  A(k4-1) + C .I h ( k + l )  i+l  = M(k) i ,  (4.14) 
where 

are known. Such an equation can be written for each grid point along the interface. The 
volume constraint condition (4.3), which takes the form 

(4.15) 
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LIZ 

xT(x) dx x2 T(x) dx s,, T(x) dx 
-142 

A -x/L 0 - L2/12 0 
B -X 0 - ~ 3 / 1 2  0 

D (4x3 - 6x) e-zz 0 - ~ 3  e-~'14/2 0 
E (4x3 - 6x) e-1.5z2 0 -0.96 erf(0.61L) 0 

s"' Temperature 
distribution 

T(x) 

C 10 e-x' 1 0 ~ ~ ' ~  erf (L/2) 0 - 5~ e-~'14 
+ 5 7 ~ ~ ' ~  erf (L/2) 

+ 0.67L e-0.375L2 
-0.33L3 e-0.375L2 

(erf denotes the error function) 

TABLE 1 .  External temperature fields subject to the investigations and their moments 

is discretized using the trapezoidal rule and forms an algebraic equation involving Li 
at all grid points. The system of equations consisting of (4.14) written for each grid 
point and (4.15) is closed by contact conditions (4 .2~)  or (4.2b). The resulting matrix 
equation is solved directly using an algorithm described by Chen & Floryan (1994). 

The procedure described above for solution of the (nonlinear) deformation problem 
has a quadratic rate of convergence and 3 4  iterations to reduce the error to the 
machine accuracy level. 

The efficiency of the whole algorithm strongly depends on the particular values of 
the parameters present in the problem, like Re, Ma, and Ca. The most efficient solution 
was obtained by carrying out one iteration on the flow field followed by one iteration 
of the interface. In all cases strong under-relaxation (0.01-0.1) was used when adjusting 
the shape of the interface. This under-relaxation increased with increasing values of Ca. 
Extensive testing showed that the algorithm delivers second-order accuracy as a 
function of grid size. See Chen & Floryan (1994) for further details. 

4.2. Deformation analysis 
We shall investigate the behaviour of the interface subject to the five types of external 
heating shown in table 1. In order to simplify the following discussion, we shall only 
consider the case Re = Ma = 0, Bi = co. This makes the temperature of the interface 
equal to the temperature of the gas phase T,(x). Also, the existence conditions (3.9), 
(3.11 a-c) can be expressed explicitly in terms of the interface temperature, e.g. (3.16). 

Temperature distribution A (table 1) describes a cavity whose ends are kept at 
constant (but different) temperatures. Conduction dominates in the gas phase leading 
to a linear temperature variation along the interface, which does not satisfy the 
existence conditions. The temperature gradient decreases as the length L of the cavity 
increases, leading to a weaker thermocapillary effect. This heating has frequently been 
studied before and is included in our analysis for comparison purposes. Sen & Davis 
(1982) treated a similar case but in the limit of L+co reduced the temperature 
difference between the endwalls proportionally to L-3. 

Temperature distribution B describes the situation where the temperature gradient 
along the interface is constant. This type of heating, which again does not satisfy the 
existence conditions, has been frequently studied in the literature (e.g. Birikh 1966). 

Temperature distribution C has been selected in order to (qualitatively) represent 
temperature fields that can be found when the liquid is subject to heating using a 
localized heat source. This problem is of interest in various material processing 
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FIGURE 4. Interface deformation pattern. External heating of type A: T ( x )  = - x / L .  Re = Ma = 0, 
Bi = co, Ca = 0.024. (a) Fixed contact angles (8, = OR = 0); (b) fixed contact points (h(-iL) = 
h($) = 1). 
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FIGURE 5. Interface deformation pattern. External heating of type B: T,(x) = - x .  (a) Fixed 
contact angles; (b )  fixed contact points. All other conditions as in figure 4. 

techniques. The corresponding temperature distribution does not satisfy the existence 
conditions. A possible lack of existence of a liquid layer subject to such a heating has 
been noted by Pimputkar & Ostrach (1980). 

Temperature distribution D provides an example of heating that satisfies the 
existence condition with G = 0 in (3.16b). Temperature distribution E also satisfies the 
existence conditions, but with G = - 1.44 in (3.16b). 

Figures 4-8 display results of the direct numerical solution of the flow problems 
corresponding to the temperature distributions A-E, respectively. Calculations shown 
were obtained for Ca = 0.024 and for an interface that was initially flat (equation 
(3.7)). Results shown in figures 4(a), 5(a) and 6(a), which were obtained in the fixed- 
contact-angle case (4.2a), demonstrate that the temperature distributions A, B and C 
induce large distortions and lead to the breakup of the interface in a sufficiently long 
cavity. The character and details of the breakup process strongly depend on the 

11 F L M  277 
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FIGURE 6. Interface deformation pattern. External heating of type C: T,(x) = 10 e-%*. (a) Fixed 
contact angles; (b) fixed contact points. All other conditions as in figure 4. 
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FIGURE 7. Interface deformation pattern. External heating of type D: T,(x) = (4x3 - 6x) e-zp 
(a) Fixed contact angles; (b) fixed contact points. All other conditions as in figure 4. 

functional form of the external heating. Fixing contact points, (4 .2b) ,  reduces the 
amplitude of the interface deformation but does not prevent breakup of the interface 
in a sufficiently long cavity, as shown in figures 4(b) ,  5(b), and 6(b). Temperature 
distributions D and E satisfy the existence condition and give rise only to small 
deformations, as shown in figures 7 and 8 .  In the following subsections, we shall discuss 
each case in detail. 

4.2.1. External heating in the form T(x)  = - x / L  (Type A )  

Study of this type of heating was initiated by Sen & Davis (1982) in the case of very 
long cavities (cavity aspect ratio L-' --z 0) and with the small-interface-deformation 
assumption. The problem is peculiar in the sense that in the limiting process (as the 
cavity becomes longer) the interface temperature gradient and thus the thermocapillary 
effect become smaller (and disappear in the limit). Sen & Davis (1982) demonstrated 
that the flow field may be divided into a core zone with CouettePoiseuille flow (with 
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X X 

FIGURE 8. Interface deformation pattern. External heating of type E: T,(x) = (4x3-6x) e-1.5zz 
(a) Fixed contact angles; (b) fixed contact points. All other conditions as in figure 4. 

zero mass flux) and two turning zones, each at the opposite end of the cavity. 
Deformation of the interface is affected only by the core zone. 

The flow in the core zone is driven by shear stress at the interface. There is a constant 
longitudinal pressure gradient required to generate backflow in order to conserve mass. 
While the pressure gradient becomes smaller in the limiting process, the total pressure 
variation from one end of the cavity to the other does not need to decrease, which is 
due to the increasing length of the cavity. It is simple to show that in the case of 
Couette-Poiseuille flow (with a flat interface) 

Solution of the (small) deformation problem (3.7) gives 

(4.16) 

(4.17 a, b)  

in the fixed-contact-angle case and 

(4.18 a, b) 
x3 Lx L2 
4L 16 d 1 2  4 8 x d 3  

h,(x) = --+-, hlmax = h , ( x )  = 

in the fixed-contact-point case. Equations (4.16) shows that the total pressure variation 
remains the same as L increases, while the amplitude of deformation increases as L2 
((4.17) and (4.18)) due to the increased distance between the contact points. One may 
note that (3.16b) predicts a similar rate of increase (see table 1 for the integral 
evaluation). The large deformation is eliminated in the solution of Sen & Davis (1982) 
by requiring that Ca = O(L-3) when L-'+ 0, which gives deformation in the form 
h = 1 + Cah, = 1 +I,-'&,, where hl = O(1). Thus, they consider a limit of L-'+O, 
Ca+O but L4Ca = O(1), which describes the case of the temperature difference 
between the endwalls decreasing at a rate of O(Lp3) as L-' + 0. Sen (1986) considered 
the case Ca = O(LM2) and showed that deformations of O(1) are possible. This requires 
reduction of temperature difference between the endwalls at the rate of O(LW2). Both of 
the above solutions consider limits that require adjustment of external temperature. 

1 1 - 2  
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(4 

Cavity 
length 

L 

6 
10 
14 
18 
19 

(b)  

Cavity 
length 

L 

6 
10 
20 
30 
40 

IhQL) - 1 I (fixed contact angles) Ca = 0.024 

Asymptotic solution 
(Cu --f 0) with the core 
flow approximation 

(Eqn (4.17b)) 

0.054 
0.15 
0.294 
0.486 
0.5415 

Asymptotic solution 
(Cu + 0) with the 

complete flow field Direct 
(Eqn (3.3)) solution 

0.0539 0.0 5 3 8 5 
0.1497 0.1527 
0.2935 0.3112 
0.4855 0.5714 
0.5412 0.6823 

Ih- I[,,, (fixed contact points) Cu = 0.024 

Asymptotic solution 
(Cu + 0) with the core 
flow approximation 

(Eqn (4.18 b)) 

0.0104 
0.0287 
0.1155 
0.2598 
0.4618 

Asymptotic solution 
(Cu+O) with the 

complete flow field Direct 
(Eqn (3.7)) solution 

0.0101 0.01 
0.0287 0.0288 
0.115 0.1122 
0.2598 0.2769 
0.4618 0.5688 

TABLE 2. Maximum interface deformation as a function of the cavity length. External heating of 
type A. Re = Ma = 0, Bi = M. (a) Fixed contact angles; (6) fixed contact points 

If this temperature is fixed, these solutions describe liquid in a cavity that has to be 
long enough in order to develop the core zone in the flow field, but not too long in order 
to prevent appearance of large interfacial distortions. This ‘window of opportunity ’ 
could be of practical value only for liquids with extremely small capillary number. 

The evolution of the interface deformation as a function of the cavity length L is 
illustrated in table 2. The results show that the amplitude of deformation initially 
increases proportionally to L2, and that the growth process is well approximated using 
the core-zone approximation of the flow field even for h - 1 = O( I), which confirms 
Sen’s (1986) results. Comparison of tables 2(a) and 2(b) shows that while fixing of the 
location of the contact points strongly reduces the magnitude of the interface 
deformation, it does not affect qualitatively its rate of growth as a function of L. 

4.2.2. External heating in the form T(x) = -x (type B) 
Study of this type of heating was initiated by Levich (1962) who analysed the flow 

in the central section of a long cavity. The interface was assumed to be flat and the flow 
was considered to be unaffected by the cavity ends and well approximated by the 
Couette-Poiseuille flow. Birikh (1966) generalized this solution without, however, 
addressing the issue of the interface deformation. 

The structure of the flow field is similar to the one already discussed in $4.2.1. The 
only difference is that the strength of the thermocapillary effect remains the same as the 
length of the cavity increases. Not surprisingly, the breakup of the interface occurs for 
much shorter cavities, as illustrated in figure 5. Analysis similar to that leading to 
(4.16t(4.18) results in 

dP - 3 
u(y)  = ;y2-;y, - - - 

dx 2 
(4.19) 
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(4 \h(-iL)- 11 (fixed contact angles) Cu = 0.024 

Cavity 
length 

L 

4 
6 
7 
7.1 

(b) 

Cavity 
length 

L 

6 
8 

10 
1 1  
11.5 

Asymptotic solution Asymptotic solution 

flow approximation complete flow field Direct 
(Eqn (4.20)) (Eqn (3.3)) solution 

(Ca+O) with the core (Ca-tO) with the 

0.096 
0.324 
0.515 
0.5369 

0.096 0.0965 
0.323 0.3504 
0.5133 0.6516 
0.5354 0.7145 

Ih - 1 lmaz (fixed contact points) Ca = 0.024 

Asymptotic solution 
(Cu+O) with the core 
flow approximation 

0.0624 
0.148 
0.287 
0.384 
0.439 

(Eqn (4.21)) 

Asymptotic solution 
(Cu-tO) with the 

complete flow field Direct 
(Eqn (3.3)) solution 

0.0607 0.0622 
0.146 0.153 
0.287 0.322 
0.383 0.466 
0.4375 0.579 

TABLE 3. Maximum interface deformation as a function of the cavity length. External heating of 
type B. Re = Ma = 0, Bi = co. (a) Fixed contact angles; (b) fixed contact points 

and deformations in the fixed-contact-angle case in the form 

x3 3L2x 
h,(x) = --+- 

4 16 ' 
(4.20a, b )  

and in the fixed-contact-point case in the form 

(4.21 a, b) 
x3 L2x L3 
4 16 ( $2)-48x\ /3 '  

h,(x) = --+-, h,,,, = h, k- - 

Equation (4.19) shows that the total pressure variations along the interface increase 
proportionally to L ,  while amplitude of the interface deformation increases as L3 
((4.20) and (4.21)). Such growth is predicted by (3.16b) (see table 1 for value of the 
integral). Table 3 illustrates the evolution of the interface deformation as a function of 
L and confirms that this deformation grows initially proportionally to L3 and that this 
growth is well approximated, even for fairly large deformations, by the core-zone 
approximation. 

4.2.3. External heating in the form T(x)  = 10 eWxe (type C) 
This particular temperature distribution has been selected in order to illustrate 

effects associated with heating of the liquid using a localized heat source. The existence 
conditions are not satisfied and the layer breaks up in a sufficiently long cavity, as 
illustrated by results shown in figure 6.  We shall now explain the physical reasons for 
the breakup. 

The liquid is driven by surface tension gradients along the interface away from the 
point of maximum temperature. The backflow along the bottom of the cavity is forced 
by the pressure rise on both sides of the heating area. Since the velocity magnitude 
decreases approximately exponentially with distance away from the heat source, this 
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FIGURE 9. Interface pressure distribution p,(x,  1). Non-deformable interface. External heating of 
type C (see table 1). Fixed contact points. Re = Ma = 0, Bi = a. 
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FIGURE 10. External heating of type D (see table 1). (a) Interface temperature distribution T ( x ,  1); 
(b )  surface pressure distribution po(x, 1). Non-deformable interface. Re = Mu = 0, Bi = co. 

pressure reaches a constant (non-zero) value sufficiently far away from the heat source, 
as illustrated in figure 9. This constant pressure would extend to the ends of the cavity 
regardless of the cavity length if the interface were non-deformable. In the case of a 
finite Ca, the constant pressure jump across the interface generates a large deformation 
regardless of the value of Ca, if the cavity is made sufficiently long. The deformation 
consists of outward bulging at both ends of the cavity (high-pressure areas) and inward 
bulging in the middle section (location of the heat source, low-pressure area), as shown 
in figure 6. 

4.2.4. External heating in the form T(x) = (4x3-6x) e-”’ (type 0) 
The functional form of this temperature distribution has been specially selected in 

order to satisfy the existence conditions. This heating is characterized by G = 0 in 
(3.16b). Its form is plotted in figure 10(a) and shows a pattern of localized heating and 
cooling. The resulting distribution of surface tension gradients is ‘balanced’ in the 
sense that it does not lead to any pressure changes far away from the heating area. Such 
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FIGURE 1 1 .  Interface pressure distribution po(x,  1). Non-deformable interface. External heating of 
type E (see table 1). Re = Ma = 0, Bi = co. 

changes were required in the case of heating discussed in the previous subsection in 
order to generate backflow. The pressure distribution is shown in figure lO(b). The 
resulting interface deformation, shown in figure 7, very rapidly approaches the form 
predicted for the infinite layer by (3.10), with hl(--;L) ,  h,($)+O as L- t  co. 

4.2.5. External heating in the form T(x)  = (4x3-6x) e-1.5x2 (type E )  
This form of temperature distribution was selected specially in order to satisfy the 

existence conditions, but with G =k 0 in (3.16b) (G = - 1.44). The heating causes 
change of elevation of the interface at x = i 03 and this is inconsistent in the limit of 
very long cavity L + co with the fixed-contact-point condition. 

The physical situation is analogous to the one discussed in $4.2.4. The pressure 
distribution displayed in figure 1 1  shows that pressure levels off to zero with distance 
away from the heating area. The pattern of the interface deformation in the fixed- 
contact-angle case, which is shown in figure 8 (a), demonstrates that the interface very 
rapidly reaches the form predicted for the infinite layer by (3.10), with hl(-$L)+ 
-0.72 and h,(+L) + 0.72 as L- t  00. The pattern of the deformation in the fixed- 
contact-point case is shown in figure 8(b), but it does not offer any insight into what 
happens as L-t  co. One may recall that such a solution cannot exist for L = co. The 
maximum deformation increases as a function of L (Ih- l),,, = 0.0128,0.0161,0.018, 
0.0195 for L = 10, 20, 30,40, respectively) which suggest possible occurrence of large 
deformations. The rate of increase is so small that it precludes detailed analysis of this 
phenomena using numerical simulation. 

4.2.6. Capillary number eflects 
Figure 12(a) illustrates the evolution of the maximum interface deformation as a 

function of the capillary number Ca determined using asymptotic (equation (3.8)) and 
direct (44.1) methods of solution. The displayed results have been obtained for external 
heating of type A and cavity length L = 6. These results demonstrate that for a cavity 
of a constant length the error of the asymptotic solution increases approximately 
proportionally to Ca2, thus confirming the regular character of the expansions (3.2). 
Figure 12(b, c)  shows the evolution of the pattern of the interface deformation. One 
may note that in the limiting case of Ca + 0 (asymptotic solution), the deformation is 



324 J .  M.  Floryan and C. Chen 

Fixed contact points 

I /  Fixed contact angles 

. 

0.2 0.4 0.6 0.8 
Ca 

0.6 

0.4 
h -  1 

0.2 

0 

1 

0.8 0.3 

0.2 

0.4 

0.1 

h - 1  0 0 

4 . 1  
-0.4 

-0.2 

4 . 8  4 . 3  
--4 -2 0 2 4 4 -2 0 2 4 

X X 

FIGURE 12. Interface deformation as a function of capillary number Cu. Re = Ma = 0, Bi = co, L = 6 .  
External heating of type A (see table 1). (a) Maximum deformation as a function of Ca. (b, c) 
Deformation pattern as function of Cu for (b)  fixed-contact-angle, (c) fixed-contact-points conditions. 
. . ., Asymptotic solution ($3); -, direction solution ($4). 

antisymmetric while the flow pattern is symmetric. Small but finite values of Ca 
eliminate antisymmetry of the deformation and produce an asymmetric flow field. 

4.2.7. Reynolds number efects 
Figure 13 shows the evolution of the interface deformation subject to heating by a 

heat source (type C )  as a function of the Reynolds number. It is shown that an increase 
of the Reynolds number from 0 to 20 increases the amplitude of the deformation by 
50%. It can be concluded that the interface is very sensitive to convective effects, at 
least for certain types of external heating and in a certain range of cavity length. This 
issue is the subject of further investigations. 

Thermocapillary convection at high Reynolds numbers has been studied previously 
by various authors with Re up lo5 (Rivas & Ostrach 1989; Hadid & Roux 1990, 1992; 
Laure et al. 1990; Carpenter & Homsy 1990; Rivas 1991 ; Zebib et al. 1985; Cowley 
& Davis 1983) but always with the assumption of small (i.e. negligible) interface 
deformation. Results displayed in figure 13 show that the results available in literature 
should be treated with extreme caution owing to the possible occurrence of large 
interfacial distortions. 
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FIGURE 13. Interface deformation as function of Reynolds number. External heating of type C 
(see table 1). Mu = 0, Bi = co, Cu = 0.024, L = 10, h(-+L) = h(+L) = 1. 

0.1 

0 

h - 1  

4 . 1  

4 - 4 - 2  0 2 4 6 
X 

FIGURE 14. Interface deformation as function of Marangoni number. External heating of type C 
(see table 1). Re = 0, Bi = 1, Cu = 0.024, L = 10, h(-&L) = h(+L) = 1. 

4.2.8. Marangoni number eflects 
Figure 14 shows the evolution of the interface deformation subject to heating by a 

heat source (type C) as a function of the Marangoni number for Re = 0 and Bi = 1. 
The results shown demonstrate a relative insensitivity of the interface distortion to 
convective heat transport. The maximum distortion decreases with an increase of Mu, 
which is due to a reduction of the effective temperature gradient along the interface. 

5. Interface diagnostics 
A direct relation between the external heating and the interface deformation cannot 

be established under general flow conditions. The occurrence of large deformation and, 
perhaps, breakup of the layer, can be predicted by carrying out a direct solution of the 
whole problem using the method described in 94.1. A cheaper alternative is offered by 
carrying out a solution with the small-deformation assumption, such as described in 
9 3, and diagnosing the true behaviour of the interface by evaluating the integrals 
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appearing in (3.9) and (3.11 a, b). A numerical solution of the Navier-Stokes equations 
still has to be carried out, but the geometry of the solution domain is simple and the 
location of the boundary conditions is fixed. 

We shall begin discussion of the interface diagnostics by considering a cavity with 
fixed contact angles. Solution of the deformation equation (3.8 a) with boundary 
conditions ( 4 . 2 ~ )  and volumetric constraint (4.15) results in 

h,(x) = x r  x2Wdx, (5.1) 
-L/2 

where W(x) is defined by (3.8e). The additive pressure constant contained in W(x) is 
evaluated as 

Construction of solution (5.1) shows that 
L/2 

4 = s_,,, Wdx 
is always zero which leaves only 

I ,  = [z, x Wdx and I3 = [rt, x2 Wdx 

available for diagnostic purposes. The utility of such diagnostics is demonstrated by 
results of calculations for temperature distributions A-E : 

A: I3 = 0, I ,  = -4.49, -12.48, -24.47 for L = 6, 10, 14; 
B :  I3 = 0, I, = -8.04, -26.95, -42.78 for L = 4, 6, 7; 
C: I2 = 0, I ,  = - 17.69, -56.47, - 117.9 for L = 4, 6, 8;  
D: I ,  = 0, I ,  = -0.8066, -0.3934, -0.025 for L = 4, 6, 8; 
E: I3 = 0, I ,  = - 1.434, - 1.487, - 1.449 for L = 4, 6, 8. 

The divergent behaviour of either I, or I ,  in cases that violate the existence 
conditions is clearly visible. The disappearance of either I, or I3 in some of the above 
case studies in a result of symmetries present in the problem (Stokes flow) and does not 
indicate any general trend. 

Solution of the small-deformation problem in the fixed-contact-point case results in 

with the constant in the pressure field evaluated as 

where W(x) = -po(x, 1) + 2u0,(x, 1). The diagnostic integrals can be evaluated 
(regardless of the pressure normalization used) as 

( 5 . 5 4  

Wdx = r2 xmdx  (5.5b) 
-L/2 

(5.54 
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Results of calculations give for temperature distributions A-E : 

A: I ,  = 1 3 = 0 ,  12=-12.48, -49.97, -112.5 for L =  10,20,30; 
B: Zl = Z3 = 0, Z2 = -8.04, -29.95, -63.86 for L = 4, 6, 8 ;  
C: I ,  = O ,  Zl=-6.621, -9.412, -11.06; Z3=-26.52, -84.71, -176.87 

for L = 4, 6, 8;  
D: Zl = Z3 = 0, Z2 = - -0.807, -0.393, -0.025 for L = 4, 6, 8; 
E: Zl = 1 3 = 0 ,  Z2=-1.43, -1.49, -1.45 for L = 4 , 6 , 8 ;  

and show behaviour of Zl, Z2 and Z3 consistent with the existence condition (3.9) and 
(3.1 1 a, b). Again, the disappearance of either (Zl, Z3) or Z2 results from symmetries 
present in the problem and does not indicate any general trend. 

The above discussion shows that integrals I,, Z2 and Z3 can be used for a relatively 
simple prediction of whether a particular heating can generate large distortions (and 
possible breakup) of the interface. 

6. Conclusions 
Analysis of thermocapillary effects in an infinite liquid layer in the absence of gravity 

was carried out. It was shown that the layer may exist only if the external temperature 
field satisfies restrictive existence conditions. The explicit form of these conditions was 
given in the case of negligible convective transport. The form of the existence 
conditions shows that it may not be possible to enforce them in the case of a general 
flow (i.e. with convective effects present). 

Analysis of a finite layer subject to carefully selected types of external heating was 
also carried out. Results show that if the external temperature field does not satisfy the 
existence conditions determined in the case of an infinite layer, large interfacial 
deformations occur, leading to breakup of the layer if the cavity is made sufficiently 
long. Since the temperature fields satisfying the existence conditions are rather unusual, 
an experimenter should be prepared for the fact that a response of the layer to an 
external heating in the actual experiment might consist of large interfacial distortions 
and, possibly, breakup of the layer. An increase of the Reynolds number increases 
deformation and leads to an earlier breakup of the interface, while an increase of the 
Marangoni number reduces this deformation. 

This work was supported by the NSERC of Canada. 

Appendix A 
Consider loading function W(x) in the form 

Its double integration and application of conditions (3.8 b, d) gives a deformation in 
the form 

Function (A 1) does not satisfy condition (3.1 l), but the relevant integrals exist owing 
to oscillatory decay of W(x) for x + f 00. 
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Appendix B 

case of Re = Ma = 0 and h, = 1 to the following form: 

UO, -t 00, = 0, UoZz + uoyy = pOz,  vozz + v~~~ = pOyr 

u, = v, = T,, = 0, 

The governing equations (3.4) and boundary conditions (3.5a, b, d, e) reduce in thc 

T,,, + T,,,, = 0 ; (B 1 a-d: 

(B 2a: 
y =  1: v,=O, (B 2b: 

uoy=-T,,, T,,+Bi(T,-T,)=O. (B 2c, d: 

y = 0: 

To solve the system (B 1) and (B 2), we define the Fourier transform of q(x , y )  as 

i ( k ;  z) = ( 2 ~ ) - ' / ~  q(x, y )  eikz dx, sr, (B 31 

where q stands for any of u,, u,, p , ,  T, and the hat denotes its Fourier transform. 
Transformation of (B 1) and (B 2), solution of the resulting system of ordinary 
differential equations in the Fourier space and transformation back into the physical 
space gives an explicit solution for all dependent variables in the form 

T,(x, y )  = ( 2 ~ ) - ' / ~  z ( k ;  y )  eWiks dk, 

uo(x, y )  = i(27c)-li2 

v,(x, y )  = ( 2 ~ ) - ' / ~  

k f k ;  y )  z ( k ;  1) ePikz dk, 

y )  z ( k ;  1) e-iks dk, 

(B 4b)  

(B 4 4  

cu 

po(x, y )  = - ( 2 ~ ) - l / ~  1 s(k; y )  z ( k ;  1) e-ikz dk, (B 4 4  
J -m 

where 

B i c ( k )  cosh (ky) 
z ( k ; y )  = ksinh(k)+Bicosh(k)' 

f k ; y )  = k- ' ( [ i+k[ , (k) (y -  l)]sinh[k(y- l)] 

- [ 5 2 ( ~ ) - 5 1 W - i ~ ( Y - -  111 cosh[k(y- 1)IL 
g(k;y) = [5,(k)-ikk(Y- 1>1sinh[k(y- 1>1-k51(k)(Y- l)cosh[k(y- 111, 
s (k ;y )  = ksinh[k(y- 1)]+2k5,(k)cosh[k(y- l)], 

&(k) = sinh2 (k)/[sinh (2k) - 2 4  t2(k) = k2/[sinh (2k) - 24,  

and i denotes the imaginary unit. The pressure p ,  is implicitly normalized by existence 
of its Fourier transform, i.e. p, + 0 as x + & cc . 

The special case of periodic heating T,(x) = T,sin(ax) results in a solution in the 
form 

T, Bi cosh (ay) 
sinh (ax), 

T,(x' ') = a sinh (a) + Bi cosh (a) 

uo(x,y) = -T,aJTa;y)cos(ax), vo(x,y) = cg(a;y)sin(ax), (B 5b, c) 

po(x, Y )  = - T, 4. ; Y )  sin (ax), (B 5 4  

where T, = T, Bicosh (a)/(a sinh (a) + Bicosh (a)). 
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